A Human-Like Robot Torso ZAR5 with Fluidic Muscles: Toward a Common Platform for Embodied AI

نویسندگان

  • Ivo Boblan
  • Rudolf Bannasch
  • Andreas Schulz
  • Hartmut Schwenk
چکیده

“Without embodiment artificial intelligence is nothing.” Algorithms in the field of artificial intelligence are mostly tested on a computer instead of testing on a real platform. Our anthropomorphic robot ZAR5 (in German ZweiArm-Roboter in the 5 version) is the first biologically inspired and completely artificial muscle driven robot torso that can be fully controlled by a data suit and two five finger data gloves. The underlying biological principles of sensor technology, signal processing, control architecture und actuator technology of our robot platform meet the requirements of biological based technical realization and support a distributed programming and control as well as an online self-adaptation and relearning processing. The following elaboration focuses on biological inspiration for the embodiment of artificial intelligence, gives a short insight into technical realisation of a humanoid robot, which is of high importance in this context, and accentuates highlights relating to a possible paradigm shift in artificial intelligence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Humanoid Muscle Robot Torso with Biologically Inspired Construction

Human-like robots combine the optimized biological morphology and functionality of the real human with the mechanical constraints and limitations in the creation as well as possible. This will be a trade-off at all times. The best biological solution of a detail is often simple in the function but too complex for the technical analogue. The technical materials are often missing what make a one-...

متن کامل

A Human-Like Robot Hand and Arm with Fluidic Muscles: Biologically Inspired Construction and Functionality

Humanoid robots are fascinating from two points of view, firstly their construction and secondly because they lend life to inanimate objects. The combination of biology and robots leads to smoother and compliant movement which is more pleasant for us as people. Biologically inspired robots embody non-rigid movement which are made possible by special joints or actuators which give way and can bo...

متن کامل

A Hybrid Neural Network Approach for Kinematic Modeling of a Novel 6-UPS Parallel Human-Like Mastication Robot

Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS) parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required ...

متن کامل

E-puck - A Robotic Platform for Studying the Evolution of Communication

In order to study animal-like communication in embodied agents, a versatile physical platform is needed for agents to interact with their environment, and communicate with other agents. Toward this aim, we present the e-puck robot epu (2008), a simple, robust and user-friendly open-hardware robotic platform. Compared to similar robots, the e-puck is small in size and is equipped only with basic...

متن کامل

Design and development of ShrewdShoe, a smart pressure sensitive wearable platform

     This study introduces a wearable in-shoe system for real-time monitoring and measurement of the plantar pressure distribution of the foot using eleven sensing elements. The sensing elements utilized in ShrewdShoe have been designed in an innovative way, they are based on a barometric pressure sensor covered with a silicon coating. The presented sensing element has great linearity up to 300...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006